
Automatic Debugging Support for UML

Designs

Johann Schumann

RIACS / NASA Ames, Mo�ett Field, CA 94035 USA,
schumann@ptolemy.arc.nasa.gov

Summary. Design of large software systems requires rigorous application of soft-
ware engineering methods covering all phases of the software process. Debugging
during the early design phases is extremely important, because late bug-�xes are
expensive.

In this paper, we describe an approach which facilitates debugging of UML
requirements and designs. The Uni�ed Modeling Language (UML) is a set of no-
tations for object-orient design of a software system. We have developed an algo-
rithm which translates requirement speci�cations in the form of annotated sequence
diagrams into structured statecharts. This algorithm detects conicts between se-
quence diagrams and inconsistencies in the domain knowledge. After synthesizing
statecharts from sequence diagrams, these statecharts usually are subject to manual
modi�cation and re�nement. By using the \backward" direction of our synthesis
algorithm, we are able to map modi�cations made to the statechart back into the
requirements (sequence diagrams) and check for conicts there. Fed back to the user
conicts detected by our algorithm are the basis for deductive-based debugging of
requirements and domain theory in very early development stages. Our approach
allows to generate explanations on why there is a conict and which parts of the
speci�cations are a�ected.

1 Introduction

Size and complexity of software systems has increased tremendously. There-
fore, the development of high-quality software requires rigorous application
of sophisticated software engineering methods. One such method which has
become very popular is the Uni�ed Modeling Language. UML [12] has been
developed by the \three amigos" Booch, Jacobson, and Rumbaugh as a com-
mon framework for designing and implementing object-oriented software.
UML contains many di�erent notations to describe the static and dynamic
behavior of a system on all di�erent levels and phases of the software design
process.

Although UML provides a common notational framework for require-
ments and design, UML, as any other language, does not eliminate bugs
and errors. These bugs must be found and �xed in order to end up with
a correctly working and reliable system. It is well known, that debugging
a large software system is a critical issue and can be a major cost-driving
factor. Changes which have to be applied to the system (e.g., to �x a bug)

2 Johann Schumann

are becoming substantially more expensive, the later they are detected (Fig-
ure 1). When an error is detected early during the de�nition phase, its cost is
relatively low, because it only inuences the requirements de�nition. Bug�xes
in a product already shipped can be up to 60{100 times more expensive [8].

Definition Development

1.5 - 6

60 - 100

1

re
la

tiv
e

co
st

 to
 c

ha
ng

e

after Release

Fig. 1. Relative costs for changes/bug�xes on di�erent stages (based on [8]).

Therefore, it is mandatory to start with debugging as early in the project
as possible. In this paper, we will discuss an approach which supports debug-
ging of scenarios (more precisely UML sequence diagrams) with respect to
given domain knowledge. This is done as a part of an algorithm [13] which
can synthesize UML statecharts from a number of sequence diagrams. This
synthesis step can be seen as a transformation from requirements to system
design. It does not only facilitate fast and justi�able design from requirements
(sequence diagrams), but also substantially helps to debug the generated de-
signs. Because sequence diagrams usually cover only parts of the system's
intended behavior, the generated statecharts need to be re�ned and modi-
�ed manually. By applying the synthesis algorithm in a \backward" way, the
re�ned statechart can be checked against the requirements. Each conict is
reported to the user and indicates a bug.

For practical applicability of any debugging aid, the presentation of the
bug, its cause and e�ect is of major importance. In our approach, we rely on
logic-based explanation technology: all conicts correspond to failure in log-
ical reasoning about sequence diagrams, statecharts, and domain knowledge.
Ongoing work, as discussed in the conclusions, uses methods from automated
deduction to point the user to the exact place where the conict occurred
and which parts of the models and speci�cation are a�ected.

This paper is organized as follows: Section 2 gives an overview of ma-
jor UML notations and a typcial iterative software design process. Then we
will describe how sequence diagrams are annotated for a justi�ed synthesis

Debugging Support for UML Designs 3

of statecharts (Section 4). Based on this algorithm we discuss methods for
debugging a sequence diagram and a synthesized statechart. In Section 7 we
discuss future work and conclude.

Throughout this paper, we will use one example to illustrate our approach.
The example concerns the interaction between an espresso vending machine
and a user who is trying to obtain a cup of co�ee. This example (based on
the ATM example discussed in [13,6]) is rather small, yet complex enough
to illustrate the main issues. The requirements presented here are typical
scenarios for user interaction with the machine (e.g., inserting a coin, selecting
the type of co�ee the user wants, reaction on invalid choices, and pressing
the cancel button). More details of the requirements will be discussed when
the corresponding UML notations have been introduced.

2 UML

The Uni�ed Modeling Language is the result of an e�ort to bring together
several di�erent object-oriented software design methods. UML has been de-
veloped by Booch, Jacobson and Rumbaugh [12] and has gained wide-spread
acceptance. A variety of tools support the development in UML; among them
are Rhapsody [10], Rational's Rose [9], or Argo/UML [1].

On the top-level, requirements are usually given in the form of use cases ,
describing goals for the user and system interactions. For more detail and
re�nement, UML contains three major groups of notations: class diagrams

for describing the static structure, interaction diagrams for requirements, and
state diagrams and activity diagrams for de�ning dynamic system behavior.
Below, we will illustrate the notations which are important for our approach
to debugging of UML designs.

2.1 Software Development with UML

Although no explicit development process is prescribed for UML, UML de-
sign usually follows the steps of Inception, Elaboration, Construction, and
Transition, used in an iterative manner. In this paper, we will not elaborate
on the process model. For details, cf., e.g., [4]. The importance of support for
debugging of UML designs on the level of sequence diagrams (requirements),
and statecharts becomes evident, when we look at a graphical representation
of an iterative development process (Figure 2). The design starts by analyz-
ing the (physical) process at the lower left part of the �gure. The result of
the analysis comprises the requirements (e.g., as a set of sequence diagrams),
and knowledge about the domain (henceforth called domain theory). Based
on these, a model of the system is developed, consisting of class diagrams,
statecharts and activity diagrams. This model must now be implemented.
Modern software engineering tools provide automatic code-generation (or at

4 Johann Schumann

least support) for this step. Finally, the produced system must be veri�ed
against the physical process, and its performance tuned.

Traditionally, the way to get a working system is simulation (process{
requirements{model), and testing (requirements{model{system). Here, errors
and bugs have to be found and removed. Within an iterative design process,
these steps are performed over and over again, depicted by the circular arcs.
To keep these iterations fast (and thus cost-e�ective), powerful techniques
for debugging requirements against domain knowledge, and models against
requirements are vital. Our approach supports this kind of debugging and
it will be discussed in the next section, following a short description of the
basic concepts of class diagrams, sequence diagrams, and statecharts.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
��������������� C

o
d

e
 G

e
n

e
ra

tio
n

A
n

a
ly

s
is

Development

Performance tuning/
-verification

TestingSimulation

System

ModelRequirements
specification

Process

Fig. 2. Iterative Design Process

2.2 Class Diagram

A class diagram is a notation for modeling the static structure of a system. It
describes the classes in a system and the relationships between them. Figure 3
shows an example of a class diagram for our co�ee-vending machine example.
In an object-oriented fashion, the main class (here \co�ee machine") is broken
down into sub-classes. The aggregation relation (3) shows when one class
is part of another one. The generalization relation (�) shows when one
class is an instance of another. For further details, see e.g., [12].

2.3 Statecharts

Statecharts [5,12], are �nite state machines extended with hierarchy and or-
thogonality. They allow a complex system to be expressed in a compact and

Debugging Support for UML Designs 5

top-level

device

Coin
checker

Cup
dispenser

Coffee-type
selector

Cancel
handling

Controller
Machine

dialogphysical

Fig. 3. A Class Diagram for the Co�ee machine.

Fig. 4. Example of a Statechart.

elegant way. Figure 4 shows a simple example of a statechart. Nodes can
either be simple nodes (A1, A2, A3, B, and C), or composite nodes (node
A in the �gure) which themselves contain other statecharts. The initial node
in a statechart is marked by �. Transitions between states have labels of the
form e[c]=a. If event e occurs and guard c holds, then the transition may
be selected to �re which results in action a being taken and a state change
occurring. This behavior is extended in a natural way to handle composite
nodes.

6 Johann Schumann

Ingr. not available

Display Ready Light

Check selection

No Coffee message

Insert coin
Request Selection

Enter Selection

ControlCoffee-UIUser

Release Coin

Request take coin

Take coin

Display Ready Light

Fig. 5. Interaction with a co�ee vending
machine (SD1).

Coffee-UI
Display Ready Light

Check selection

Display Ready Light

Insert coin
Request Selection

Enter Selection

selection not validRequest Selection

Cancel

Take coin

Request take coin

Release Coin

Acknowledge Cancel

User Control

Fig. 6. Another interaction with a cof-
fee vending machine (SD2).

2.4 Sequence Diagrams

Scenarios describe concrete examples of the system's intended behavior. In
UML scenarios can be expressed as sequence diagrams. A sequence diagram

(SD) shows the interaction between objects of a system over time. The SD
in Figure 5 is an example for interactions between the objects \User", the
user interface of the co�ee machine (\Co�ee-UI"), and the machine (\Con-
trol") itself. The vertical lines represent the time-line for the given object,
de�ning the object's life during the interaction. Messages (like \Insert coin")
are exchanged between the objects. Figure 6 is a di�erent scenario for our
co�ee-machine. It describes an invalid selection by the user (e.g., choosing
sugar and sweetener at the same time).

3 Extending Sequence Diagrams

The simplicity of sequence diagrams makes them suitable for expressing re-
quirements as they can be easily understood by customers, requirements en-
gineers and software developers alike. Unfortunately, the lack of semantic
content in sequence diagrams makes them ambiguous and therefore di�cult
to interpret. Let us assume that in our example, there exists an additional
sequence diagram, SD0, identical to SD1 in Figure 5 except that there are two
\Insert coins" messages adjacent to each other. There are three possible ways
to interpret the conjunction of the two SDs | either a cup of co�ee costs
one or two coins (ridiculous!), or it costs just one coin, in which case SD0

Debugging Support for UML Designs 7

is incorrect. The other case (two coins needed) invalidates SD1. In practice,
such ambiguities are often resolved by examining the informal requirements
documentation but, in some cases, ambiguities may go undetected leading to
costly software errors.

For the automatic generation of (conict-free) designs, such documents
are usually too informal. On the other hand, the need to provide a full formal
domain theory containing all semantic information is clearly too much a
burden for the designer and thus not acceptable in practice.

Our approach allows for a compromise: the user can annotate messages in
a sequence diagram with a pre/post-condition style speci�cation expressed in
OCL, UML's logic-based speci�cation and constraint language. For success-
ful conict detection (and statechart synthesis), only a small percentage of
messages need to be annotated at all. This speci�cations should include the
declaration of global state variables, where a state variable represents some
important aspect of the system, e.g., whether or not a coin is in the co�ee-
vending machine. Pre- and post-conditions should then include references to
those variables. Our experience with the case studies carried out so far (see
Conclusions) is that the state variables and their data types usually directly
\fall out" from the class diagram. Note that not every message needs to be
given a speci�cation, although, clearly, the more semantic information that
is supplied, the better the quality of the conict detection. Currently, our
algorithm only exploits constraints of the form var = value, but there may
be something to be gained from reasoning about other constraints using an
automated theorem prover, e.g., [7] or constraint solving techniques.

Fig. 7 gives speci�cations for selected messages in our co�ee-machine ex-
ample. Here, the state variables are the boolean variables CoinInMachine,
CoinInReturnSlot, CoffeeTypeSelected, the variable Coin reecting the
number of coins in the machine (0, or 1), and SelectedCoffeeType. In order
to talk about all values of the state variables at a given point, we use the
notion of a state vector. This is a vector of values of the state variables. In
our example, the state vector has the following form:

<CoinInMachine^, CoinInReturnSlot^, CoffeeTypeSelected^,

Coin^, SelectedCoffeeType^>

The notation var̂ extends the possible value for a state variable by an
undetermined value, denoted by a \?", i.e., var̂ 2 Dom(var) [f?g. For use
with our algorithm, we will annotate each message of a sequence diagram
with a statevector where the values of the state variables are determined by
the algorithm described below.

4 Automatic Synthesis of Statecharts from Sequence

Diagrams

The framework for debugging UML designs is based upon an algorithm for
automatic synthesis of statecharts from sequence diagrams and a domain the-

8 Johann Schumann

CoinInMachine, CoinInReturnSlot, CoffeeTypeSelected : Boolean
Coin : 0..1
SelectedCoffeeType : enum {none,Espresso,Cappuchino,Milk}

context insert coin
pre: CoinInMachine = F ;
post: CoinInMachine = T and Coin = 1 ;

context Enter Selection (CT :enum {none,Espresso,Cappuchino,Milk})
pre: CoffeeTypeSelected = F ;
post: CoffeeTypeSelected = T and SelectedCoffeeType = CT ;

context Take coin
pre: CoinInReturnSlot = T ;
post: CoinInReturnSlot = F and CoinInMachine = F ;

context Display Ready Light
pre: CoinInReturnSlot = F and CoinInMachine = F ;
post:

context Request Selection
pre: CoffeeTypeSelected = F ;
post:

context Release coin
pre: Coin = 1 ;
post: CoffeeTypeSelected = F and CoinInReturnSlot = T and Coin=0

and CoinInMachine = F and SelectedCoffeeType = none ;

context Request take coin
pre: CoinInReturnSlot = T ;
post:

context Acknowledge cancel
pre: CoinInMachine = T ;
post:

Fig. 7. Domain theory for messages in the co�ee-machine example.

ory [13]. The process to convert a number of SDs into a structured statechart
consists of several steps: in the �rst step, each SD is annotated and conicts
between the SD and the domain theory (and hence, other SDs) are detected
and reported to the user. Then, a statechart for each of the objects in the SD
is generated; and all statecharts for an object are merged into a single state-
chart. The �nal step of the synthesis introduces hierarchy by grouping nodes
into composite nodes, thus enhancing readability. In this paper, we are only
concerned with the �rst, conict detection part (as a basis for debugging),
and the �nal result, the statechart. For details on the algorithm see [13].

There are two kinds of constraints imposed on a sequence diagram: con-
straints on the state vector given by the OCL speci�cation, and constraints
on the ordering of messages given by the SD itself. These constraints must
be solved and arising conicts be reported to the user. More formally, the

Debugging Support for UML Designs 9

process of conict detection can be written as follows. An annotated sequence
diagram is a sequence of messages m1; : : : ;mn, with

s
pre
0

m1�! s
post
0

; s
pre
1

m2�! : : :
mr�1

�! s
post
r�1

; sprer

mr�! spostr (1)

where the s
pre
i

, s
post
i

are the state vectors immediately before and after mes-

sage mi is being sent. Si will be used to denote either s
pre
i

or s
post
i

; s
pre
i

[j]

denotes the element at position j in s
pre
i

(similarly for s
post
i

).
In the �rst step of the synthesis process, we assign values to the variables

in the state vectors as shown in Figure 8. The variable instantiations of the
initial state vectors are obtained directly from the message speci�cations
(lines 1,2): if message mi assigns a value y to a variable of the state vector in
its pre- or post-condition, then this variable assignment is used. Otherwise,
the variable in the state vector is set to an undetermined value ?. Since each
message is speci�ed independently, the initial state vectors will contain a lot
of unknown values. Most (but not all) of these can be given a value in one
of two ways: two state vectors, Sk and Sl (k 6= l), are considered the same if
they are uni�able (line 6). This means that there exists a variable assignment
� such that �(Sk) = �(Sl). This situation indicates a potential loop within a
SD. The second means for assigning values to variables is the application of
the frame axiom (lines 8,9), i.e., we can assign unknown variables of a pre-
condition with the value from the preceeding post-condition, and vice versa.
This means that values of state variables are propagated as long as they are
not changed by a speci�c pre- or post-condition. This also assumes that there
are no hidden side-e�ects between messages.

A conict (line 11) is detected and reported if the state vector immediately
following a message and the state vector immediately preceding the next
message di�er.

Example 1. Let us consider how this algorithm operates on the �rst few mes-
sages of SD1 from Figure 5. When annotating the �rst message (\Display
Ready Light"), we obtain the following state vector on the side of the user-
interface: S1 = <F,F,?,?,?>. The values of the �rst two state variables are
determined by the message's pre-condition in the domain theory. The state-
vector S2 on the receiving side of our message only consists of \?". As a
pre-condition for the message \Insert coin" we have CoinInMachine = F.
Thus we have S3 = <F,?,?,?,?> as the state vector. All other messages in
SD1 are annotated in a similar way. Now, our algorithm (lines 4{12) tries
to unify state vectors and propagate the variable assignments. In our case,
the attempt to unify S2 with S3 would assign the value F to the �rst vari-
able in S2, yielding S2 = <F,?,?,?,?>. Now, both state vectors are equal.
Then, variable values are propagated using the frame axiom. In our case, we
can propagate the value of CoinInReturnSlot = F (from S1) into S2 and
S3, because the domain theory does not prescribe speci�c values of this state
variable at these messages. Hence, its current value F can be used in the other

10 Johann Schumann

Input. An annotated SD
Output. A SD with extended annotations

1 for each message mi do

2 if mi has a precondition vj = y then s
pre
i [j] := y else s

pre
i [j] := ? �

3 if mi has a postcondition vj = y then s
post
i [j] := y else s

post
i [j] := ? �

4 for each state vector Sk do

5 if there is some Sl 6= Sk and some uni�er � with �(Sk) = �(Sl) then
6 unify Sk and Sl;
7 propagate instantiations with frame axiom:

8 for each j; i with i > 0 : if s
pre
i [j] = ? then s

pre
i [j] := s

post
i�1 [j] �

9 if s
post
i [j] = ? then s

post
i [j] := s

pre
i [j] �

10 if there is some i; j with s
post
i [j] 6= s

pre
i+1 [j] then

11 Report Conict;
12 break;

Fig. 8. Extending the state vector annotations.

state vectors, �nally yielding S2 = S3 = <F,F,?,?,?>. After performing all
uni�cation and propagation steps, we obtain an annotated sequence diagram
as shown in Figure 9. The conict indicated there will be discussed in the
next section.

5 Debugging a Sequence Diagram

The algorithm from the previous section detects conicts of a SD with the
domain theory (and thus with other sequence diagrams). Any such conict
which is detected corresponds to a bug which needs to be �xed. The bug can
be in the sequence diagrams, which means that one or more sequences of ac-
tions are not compatible with the domain theory, and henceforth with other
SDs. Such a situation often occurs when sequence diagrams and domain the-
ory for a large system are developed by di�erent requirements engineers. Our
algorithm is capable of directly pointing to the location where the conict
with the domain theory occurs. The respective message, together with the
instantiated pre- and post-conditions, as well as the required state vector val-
ues are displayed. This feature allows to easily debug the sequence diagram.
Of course, the error could be in the domain theory instead. For example, one
designer could have set up pre- or post-conditions which are too restrictive
to be applicable for scenarios, speci�ed by other designers. In that case, the
domain theory must be debugged and modi�ed. Our algorithm can also pro-
vide substantial support here, because it is able to display the exact location
where the conicting state variables have been instantiated. Especially in
long sequence diagrams the place where a state variable is instantiated and

Debugging Support for UML Designs 11

the place where the conict occurs can be far apart. The current version of
our algorithm provides only rudimentary feed-back as demonstrated in the
example below. Future work (which also allows richer OCL constructs to
be used) requires more elaborate, human-readable descriptions of the error
trace. Automated theorem provers and work on proof presentation, like the
ILF system [2,3] will be used for that purpose. Such a system will not only ex-

plain the possible reasons for a conict, but can also give (heuristics-driven)
hints to the user on how to �x the problem.

Example 2. The following example shows, how conict detection can be used
for debugging: Figure 9 shows SD1 from Figure 5 after the state vectors have
been extended by our algorithm of Figure 8. Our procedure has detected a
conict with the domain theory. As an output it provides the messages and
state vectors which are involved in the conict:

Conflict in SD1: Object Coffee-UI

statevector after "Insert coin" = <T,F,T,1,none> [Msg #2]

statevector before "Request Selection" = <T,F,F,1,none> [Msg #3]

conflict in variable "CoffeeTypeSelected"

conflict occurred as consequence of unification of

statevector after "Display Ready Light" = <F,F,T,0,none> [Msg #1]

statevector after "Display Ready Light" = <F,F,T,0,none> [Msg #11]

statevector after "Take coin" = <F,F,T,0,none> [Msg #10]

This arises because state vectors SV1 (state vector before \Display Ready
Light") and SV2 (after \Take coin") are uni�ed (Figure 9 shows the instan-
tiations of the vectors after uni�cation). This corresponds to the fact that
the co�ee machine returns to its initial state after \Take coin" is executed.
The state vectors tell us that there is a potential loop at this point. A sec-
ond execution of this loop causes the state variable \Co�eeTypeSelected" to
true, when the system asks for a selection. However, the domain theory tells
us that this variable must be false as a pre-condition of the \Request Selec-
tion" message. Hence, there is a conict, which represents the fact that the
developer probably did not account for the loop when designing the domain
theory.

The user must now decide on a resolution of this conict | i.e., to debug
this situation. The user either

� can tell the system that the loop is not possible, in which case the uni�er
that detected the loop is discarded. This amounts to modifying the an-
notated sequence diagram (by restricting possible interpretations). The
user can

� modify the sequence diagram at some other point, e.g., by adding mes-
sages; or

� modify the domain theory. In our example, the action taken might be that
the domain theory is updated by giving \Release coin" the additional

12 Johann Schumann

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

ControlCoffee-UIUser

No Coffee message

Display Ready Light

Display Ready Light
Insert coin
Request Selection

Enter Selection

Ingr. not available

<F,F,T,0,none>

<F,F,T,0,none>

<T,F,F,1,none>

<T,F,F,1,none>

<T,F,T,1,CT>

Release Coin

Request take coin

Take coin

<T,F,T,1,CT>

<T,F,T,1,CT>

<F,T,T,0,none>

<F,T,T,0,none>

<F,T,T,0,none>

<F,F,T,0,none>

<F,T,T,0,none>

<F,F,T,0,none>

<F,F,T,0,none>

<F,F,T,0,none>

<T,F,T,1,none>

<T,F,F,1,none>

Check selection
<T,F,T,1,CT>

SV1

SV2

CONFLICT

Fig. 9. Sequence Diagram SD1 with extended annotations. A conict has occurred.

postcondition CoffeeTypeSelected = false. This extra post-condition
resets the value of the variable (i.e., the selection) when the user is asked
to remove the coin. The position of the change has been obtained by
systematically going backwards from SV2. Although possible locations
are automatically given by the system, the decision where to �x the bug
(at \Release coin" or at \Take coin") must be made by the user. Here, the
second possibility was chosen, because the speci�cation for that message
modi�ed a state variable which is related to the variable which caused
the conict.

6 Debugging a Synthesized Statechart

When the statechart synthesis algorithm successfully terminates, it has gen-
erated a human-readable, hierarchically structured statechart, reecting the
information contained in the SDs and the domain theory. In general, how-
ever, sequence diagrams usually describe only parts of the intended dynamic
behavior of a system. Therefore, the generated statechart can only be a skele-

ton rather than a full-edged system design. Thus, the designer usually will
extend, re�ne, and modify the resulting statechart manually. Our approach
takes this into account by generating a well structured, human-readable stat-
echart which facilitates manual re�nement and modi�cation.

However, these manual actions can be sources of errors which will have
to be found and removed from the design. In the following, we describe two
approaches, addressing this problem.

Debugging Support for UML Designs 13

6.1 Classical Debugging

The traditional way to �nd bugs in a statechart is to run simulations and large
numbers of test cases. Most commercial tools for statecharts, like Betterstate,
Statemate, or Rhapsody support these techniques. Some tools also provide
more advanced means for analysis, like detection of deadlocks, dead branches,
non-deterministic choices, or even model checking for proving more elaborate
properties. In this paper, we will not discuss these techniques.

6.2 Debugging w.r.t. Requirements

Whenever a design (in our case the statechart) is modi�ed, care must be
taken that all requirements speci�cations are still met, or that an appropri-
ate update is made. Traditionally, this is done manually by updating the re-
quirements document (if it is done at all). Bugs are usually not detected (and
not even searched for) until the �nished implementation is tested. Thereby,
late detection of bugs leads to increased costs. By considering the \reverse"
direction of our synthesis algorithm, we are able to

� check that all sequence diagrams are still valid, i.e., that they represent
a possible sequence of events and actions of the system

� detect conicts between the current design (statechart) and one or more
SDs, and

� detect inconsistencies with respect to the domain theory.

The basic principle of that technique is that we take one sequence diagram
after the other, together with the domain theory, and check if that sequence of
messages is a possible execution sequence in the given statechart. Here again
we use logic-based techniques, similar to those described above (uni�cation
of state vectors, value propagation with the frame axiom). An inconsistency
between the (modi�ed) statechart and the SD indicates a bug (in the SD
or SC). By successively applying patches to the SD (by removing or adding
messages to the SD) the algorithm searches for possible ways to obtain an
updated and consistent SD. Since in general more than one possible �x for
an inconsistency exists, we perform an iterative deepening search resulting
in a solution with the fewest modi�cations to the sequence diagram. We are
aiming to extend this search by applying heuristics to select \good" �xes.

Here again, the form of feed-back to the user is of major importance. We
are envisioning that the system can update the requirements and provide
explanations for conicts in a similar way as described above.

Example 3. The statechart in Figure 10 has been re�ned. The transition be-
tween N2 and N3 has been extended in such a way that �rst event e2, then
e3 with action a3 has to occur before the state N3 is reached. The origi-
nal statechart has been generated from a sequence diagram as shown on the
right-hand side of Fig. 10. The modi�cation of the statechart is propagated

14 Johann Schumann

back to the sequence diagrams where the change is clearly marked. In this
example, the extension could be made without causing a conict. However,
it is advisable for the designer and/or the requirements engineer to carefully
observe these changes in order to make sure that these modi�ed requirements
still meet the original intended system behavior.

Object 1

e1/a1

e2

e2

e3/a3

Object 1

e3

a3

e2

e1

a1

CHANGES

N2

N3

N1

Object2

Fig. 10. Statechart with manual re�nement (the removed transition is shown as a
dashed line, the new elements are bold), and the sequence diagram as updated by
our algorithm (right).

7 Future Work and Conclusions

We have presented a method for debugging UML sequence diagrams and
statecharts during early stages in the software development process. Based on
an algorithm, designed for justi�ed synthesis of statecharts, we have identi�ed
two points where conicts (as a basis for debugging) can be detected: during
extending the annotations of a SD (conicts w.r.t. the domain theory), and
updating of sequence diagrams based upon a re�ned or modi�ed statechart.

The algorithm which is described in [13] has been implemented in Java
and has been used for several smaller case studies in the area of object-
oriented systems, user interfaces, and agent-based systems [11]. Current work
on this part include integration this algorithm into a commercial UML tool
(MagicDraw). Currently we are extending our synthesis algorithm to provide
the debugging facilities described in this paper. Future work will mainly focus
on integrating and extending explanation technology into our system.

Debugging large designs with lengthy and complex domain theories vitally
depends upon an elaborate way of providing feed-back to the user. Starting
from the basic information about a conict (i.e., a failed uni�cation), we will
use theorem proving techniques of abduction and counter-example generation
to provide as much feed-back as possible on where the bug might be, and how

Debugging Support for UML Designs 15

to �x the problem1. These techniques will be combined with tools capable of
presenting a logic statement in human-readable, problem-speci�c way (e.g.,
ILF [2,3]). Only, if debugging feedback can be given in the notation of the
engineering domain rather than in some logic framework, such debugging aids
will be accepted in practice.

It is believed that UML (and tools based upon this notation) will have
a substantial impact on how software development is made. By providing
techniques which do not only facilitate design by synthesis, but also provide
powerful means to debug requirements and designs in early stages we are able
to contribute to tools which are useful in design of large software systems.

References

1. Argo/UML. University of California, Irvine, 1999. http://argouml.tigris.org.
2. B. I. Dahn and A. Wolf. Natural Language Presentation and Combination of

Automatically Generated Proofs, volume 3 of Applied Logic Series, pages 175{
192. Kluwer Academic Publishers, 1996.

3. B. I. Dahn et al. Integration of Automated and Interactive Theorem Proving
in ILF. In Proc. CADE-14, volume 1249 of LNAI, pages 57{60. Springer, 1997.

4. M. Fowler. UML Distilled. Addison Wesley, 1997.
5. D. Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8:231{274, 1987.
6. T. M�annist�o, T. Syst�a, and J. Tuomi. SCED Report and User Manual. Report

A-1994-5, Dept of Computer Science, University of Tampere, 1994.
7. M. Moser, O. Ibens, R. Letz, J. Steinbach, Chr. Goller, J. Schumann, and

K. Mayr. The Model Elimination Provers SETHEO and E-SETHEO. Journal
of Automated Reasoning, 18:237{246, 1997.

8. R. Pressman. Software Engineering - a Practitioneer's Approach. McGraw-Hill,
1997.

9. Rational Rose. Rational Software Corporation, Cupertino, CA, 1999.
10. Rhapsody. I-Logix Inc., Andover, MA, 1999.
11. J. Schumann and J. Whittle. Automatic synthesis of agent designs in uml. In

Proc. of Goddard Workshop on Agent-based Systems. Springer, 2000. to appear.
12. Uni�ed Modeling Language Speci�cation, Version 1.3, 1999. Available from

Rational Software Corporation, Cupertino, CA.
13. J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios.

In Proc. ICSE 2000, 2000.

1 This problem essentially is equivalent to �nding which hypotheses are missing or
wrong when a conjecture cannot be proven valid.

